Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.209
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3471, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658559

RESUMO

Paddy fields are hotspots of microbial denitrification, which is typically linked to the oxidation of electron donors such as methane (CH4) under anoxic and hypoxic conditions. While several anaerobic methanotrophs can facilitate denitrification intracellularly, whether and how aerobic CH4 oxidation couples with denitrification in hypoxic paddy fields remains virtually unknown. Here we combine a ~3300 km field study across main rice-producing areas of China and 13CH4-DNA-stable isotope probing (SIP) experiments to investigate the role of soil aerobic CH4 oxidation in supporting denitrification. Our results reveal positive relationships between CH4 oxidation and denitrification activities and genes across various climatic regions. Microcosm experiments confirm that CH4 and methanotroph addition promote gene expression involved in denitrification and increase nitrous oxide emissions. Moreover, 13CH4-DNA-SIP analyses identify over 70 phylotypes harboring genes associated with denitrification and assimilating 13C, which are mostly belonged to Rubrivivax, Magnetospirillum, and Bradyrhizobium. Combined analyses of 13C-metagenome-assembled genomes and 13C-metabolomics highlight the importance of intermediates such as acetate, propionate and lactate, released during aerobic CH4 oxidation, for the coupling of CH4 oxidation with denitrification. Our work identifies key microbial taxa and pathways driving coupled aerobic CH4 oxidation and denitrification, with important implications for nitrogen management and greenhouse gas regulation in agroecosystems.


Assuntos
Desnitrificação , Metano , Oryza , Oxirredução , Microbiologia do Solo , Solo , Metano/metabolismo , Oryza/metabolismo , Oryza/microbiologia , China , Solo/química , Aerobiose , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Óxido Nitroso/metabolismo , Filogenia , Isótopos de Carbono/metabolismo , Metagenoma
2.
Sci Total Environ ; 926: 172133, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569960

RESUMO

Evaluating the impact of global warming on rice production and greenhouse gas (GHG) emissions is critical for ensuring food security and mitigating the consequences of climate change. Nonetheless, the impacts of warming on crop production, GHG emissions, and microbial mechanisms in the single-cropping rice systems remain unclear. Here, a two-year field experiment was conducted to explore the effects of warming (increased by 2.7-3.0 °C on average) in the rice growing season on crop production and functional microorganisms associated with GHG emissions. Results showed that warming resulted in significant reduction (p < 0.01) in the aboveground biomass and grain yield as well as in grain weight, the number of spikelets per panicle, and the seed-setting rate. However, it caused a significant increase (p < 0.01) in the number of panicles by 15.6 % and 34.9 %, respectively. Furthermore, warming significantly increased (p < 0.01) seasonal methane (CH4) emissions but reduced nitrous oxide (N2O) emissions, particularly in 2022.The relative abundance of genes associated with CH4 metabolism and nitrogen metabolism was increased by 40.7 % and 32.7 %, respectively, in response to warming. Moreover, warming had a positive impact on the abundance of genes related to CH4 production and oxidation processes but did not affect the denitrification processes associated with N2O production. These results showed that warming decreased rice yield and biomass in the single cropping rice system but increased CH4 emissions and global warming potential. Taken together, to address the increasing food demand of a growing population and mitigate the impacts of global warming, it is imperative to duce GHG emissions and enhance crop yields.


Assuntos
Gases de Efeito Estufa , Oryza , Gases de Efeito Estufa/análise , Oryza/metabolismo , Agricultura/métodos , Aquecimento Global , Produção Agrícola , Óxido Nitroso/análise , Metano/análise , Solo , China
3.
Br J Hosp Med (Lond) ; 85(3): 1-2, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38557090

RESUMO

Although nitrous oxide is widely used for analgesia and anxiolysis, its use is under scrutiny because of concerns about its environmental impact and potential implications for mental health. This article discusses the advantages and disadvantages of this agent.


Assuntos
Analgesia , Anestesia , Anestésicos , Humanos , Óxido Nitroso , Dor/tratamento farmacológico
4.
Sci Rep ; 14(1): 7752, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565858

RESUMO

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Assuntos
Compostagem , Gases de Efeito Estufa , Solo , Agricultura/métodos , Triticum , Carbono , Carvão Vegetal , Cloreto de Sódio , Cloreto de Sódio na Dieta , Óxido Nitroso/análise , Dióxido de Carbono/análise
5.
PLoS One ; 19(4): e0301296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574046

RESUMO

In this study, the complex interactions between soil types, compaction, and moisture on nitrogen (N) transformation processes such as ammonia (NH3) volatilization, ammonification, nitrification, and denitrification were examined over a 30-day period using a simulated column approach. Two soil types: loam, and sandy loam, were subjected to three compaction treatments-control, surface, and sub-surface compaction-and two moisture regimes, dry and wet. Liquid urea ammonium nitrate (32-0-0) was used as the N fertilizer source at a rate of 200 kg N ha-1. Key indicators of N transformations were measured, including residual concentrations of ammonium (NH4-N) and nitrate (NO3-N), NO3-N leaching, NH3 volatilization, and nitrous oxide (N2O) emissions. Findings revealed that compaction significantly increased residual NH4-N concentrations in deeper soil profiles, with the highest 190.80 mg kg-1 recorded in loam soil under sub-surface compaction and dry conditions. Nitrification rates decreased across both soil types due to compaction, evidenced by elevated residual NH4-N levels. Increased NO3-N leaching was observed in loam soil (178.06 mg L-1), greater than sandy loam (81.11 mg L-1), due to initial higher residual NO3- in loam soil. The interaction of compaction and moisture most affected N2O emissions, with the highest emissions in control treatments during dry weather at 2.88 kg ha -1. Additionally, higher NH3 volatilization was noted in moist sandy loam soil under control conditions at 19.64 kg ha -1. These results highlight the necessity of considering soil texture, moisture, and compaction in implementing sustainable N management strategies in agriculture and suggest recommendations such as avoiding broadcast application in moist sandy loam and loam soil to mitigate NH3 volatilization and enhance N use efficiency, as well as advocating for readjustment of fertilizer rate based on organic matter content to reduce potential NO3-N leaching and N2O emissions, particularly in loam soil.


Assuntos
Nitrogênio , Solo , Fertilizantes/análise , Agricultura , Amônia/análise , Areia , Óxido Nitroso/análise
6.
Clin Nurse Spec ; 38(3): 147-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625805
7.
Huan Jing Ke Xue ; 45(5): 2891-2904, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629551

RESUMO

The increasing use of nitrogen fertilizers exerts extreme pressure on the environment (e.g., greenhouse gas emissions, GHGs) for winter wheat-summer maize rotation systems in the North China Plain. The application of controlled-release fertilizers is considered as an effective measure to improve crop yield and nitrogen fertilizer utilization efficiency. To explore the impact of one-time fertilization of controlled-release blended fertilizer on crop yield and GHGs of a wheat-maize rotation system, field experiments were carried out in Dezhou Modern Agricultural Science and Technology Park from 2020 to 2022. Five treatments were established for both winter wheat and summer maize, including no nitrogen control (CK), farmers' conventional nitrogen application (FFP), optimized nitrogen application (OPT), CRU1 (the blending ratio of coated urea and traditional urea on winter wheat and summer maize was 5:5 and 3:7, respectively), and CRU2 (the blending ratio of coated urea and traditional urea on winter wheat and summer maize was 7:3 and 5:5, respectively). The differences in yield, nitrogen fertilizer utilization efficiency, fertilization economic benefits, and GHGs among different treatments were compared and analyzed. The results showed that nitrogen application significantly increased the single season and annual crop yields of the wheat-maize rotation system (P < 0.05). Compared with those of FFP, the CRU1 and CRU2 treatments increased the yields of summer maize by 0.4% to 5.6%, winter wheat by -5.4% to 4.1%, and annual yields by -1.1% to 3.9% (P > 0.05). N recovery efficiency (NRE), N agronomic efficiency (NAE), and N partial factor productivity (NPFP) were increased by -8.6%-43.4%, 2.05-6.24 kg·kg-1, and 4.24-10.13 kg·kg-1, respectively. Annual net income increased by 0.2% to 6.3%. Nitrogen application significantly increased the annual emissions of soil N2O and CO2 in the rotation system (P < 0.05) but had no effect on the annual emissions of CH4 (except for in the FFP treatment in the first year). The annual total N2O emissions under the CRU1 and CRU2 treatments were significantly reduced by 23.4% to 30.2% compared to those under the FFP treatment (P < 0.05). Additionally, nitrogen application significantly increased the annual global warming potential (GWP) of the rotation system (P < 0.05), but the intensity of greenhouse gas emissions was reduced due to the increase in crop yields. Compared with that under FFP, the annual GWP under the CRU1 and CRU2 treatments decreased by 9.6% to 11.5% (P < 0.05), and the annual GHGs decreased by 11.2% to 13.8% (P > 0.05). In summary, the one-time application of controlled-release blended fertilizer had a positive role in improving crop yield and economic benefits, reducing nitrogen fertilizer input and labor costs, and GHGs, which is an effective nitrogen fertilizer management measure to promote cleaner production of food crops in the North China Plain.


Assuntos
Gases de Efeito Estufa , Fertilizantes , Triticum , Zea mays , Preparações de Ação Retardada , Óxido Nitroso/análise , Agricultura/métodos , Solo , China , Nitrogênio , Ureia
8.
Sci Rep ; 14(1): 8706, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622195

RESUMO

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Assuntos
Carvão Vegetal , Gases de Efeito Estufa , Oryza , Solo/química , Aquecimento Global , Agricultura/métodos , Gases de Efeito Estufa/análise , Oryza/química , Metano/análise , Carbono , Óxido Nitroso/análise
9.
Environ Sci Technol ; 58(16): 7056-7065, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38608141

RESUMO

The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production. Depth-resolved metagenomes showed that consumption of nitrous oxide near the surface was correlated with an enrichment of Clade II nitrous oxide reducers, consistent with a growing appreciation of their importance in controlling release of nitrous oxide to the atmosphere. Our work also provides evidence for the reduction of nitrous oxide at a pH of 4, well below the generally accepted limit of pH 5.


Assuntos
Óxido Nitroso , Óxido Nitroso/metabolismo , Bactérias/metabolismo , Oxirredutases/metabolismo , Desnitrificação
10.
J Hazard Mater ; 470: 134301, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626681

RESUMO

Carbendazim residue has been widely concerned, and nitrous oxide (N2O) is one of the dominant greenhouse gases. Microbial metabolisms are fundamental processes of removing organic pollutant and producing N2O. Nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) can change soil abiotic properties and microbial communities and simultaneously affect carbendazim degradation and N2O emission. In this study, the comprehensive linkages among carbendazim residue, N2O emission and microbial community after the DMPP application were quantified under different soil moistures. Under 90% WHC, the DMPP application significantly reduced carbendazim residue by 54.82% and reduced soil N2O emission by 98.68%. The carbendazim residue was negatively related to soil ammonium nitrogen (NH4+-N), urease activity, and ratios of Bacteroidetes, Thaumarchaeota and Nitrospirae under 90% WHC, and the N2O emission was negatively related to NH4+-N content and relative abundance of Acidobacteria under the 60% WHC condition. In the whole (60% and 90% WHC together), the carbendazim residue was negatively related to the abundances of nrfA (correlation coefficient = -0.623) and nrfH (correlation coefficient = -0.468) genes. The hao gene was negatively related to the carbendazim residue but was positively related to the N2O emission rate. The DMPP application had the promising potential to simultaneously reduce ecological risks of fungicide residue and N2O emission via altering soil abiotic properties, microbial activities and communities and functional genes. ENVIRONMENTAL IMPLICATION: Carbendazim was a high-efficiency fungicide that was widely used in agricultural production. Nitrous oxide (N2O) is the third most important greenhouse gas responsible for global warming. The 3, 4-dimethylpyrazole phosphate (DMPP) is an effective nitrification inhibitor widely used in agricultural production. This study indicated that the DMPP application reduced soil carbendazim residues and N2O emission. The asymmetric linkages among the carbendazim residue, N2O emission, microbial community and functional gene abundance were regulated by the DMPP application and soil moisture. The results could broaden our horizons on the utilizations DMPP in decreasing fungicide risks and N2O emission.


Assuntos
Carbamatos , Fungicidas Industriais , Microbiota , Nitrificação , Óxido Nitroso , Pirazóis , Microbiologia do Solo , Poluentes do Solo , Óxido Nitroso/análise , Poluentes do Solo/análise , Microbiota/efeitos dos fármacos , Benzimidazóis , Solo/química , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/classificação , Água/química
11.
Sci Total Environ ; 927: 172270, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583627

RESUMO

Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.


Assuntos
Metano , Óxido Nitroso , Peróxidos , Qualidade da Água , Metano/análise , Óxido Nitroso/análise , Peróxidos/análise , Poluentes Químicos da Água/análise , Gases de Efeito Estufa/análise
12.
J Environ Manage ; 357: 120775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569263

RESUMO

The present study aimed to assess the efficiency of zeolite in mitigating the nitrogen (N) losses through ammonia (NH3) and nitrous oxide (N2O) emissions from pig slurry (PS) applied to Italian ryegrass (IRG)-maize fields under a crop rotation system and the consequent effect on nitrogen use efficiency (NUE) for forage production. PS was applied at rates of 150 and 200 kg N ha-1 for the IRG and maize growing seasons, respectively, with or without zeolite. Soil mineral N content and NH3 and N2O emissions were measured periodically throughout the year-round cultivation of IRG and maize. Forage yield and nutritional composition were also analyzed at the harvest time of each crop. The PS with/without zeolite application effects were interpreted by comparison with those obtained for the negative control (no-N fertilization). Soil ammonium (NH4+) content in the PS-applied plots sharply increased within the first week, then progressively decreased in both the IRG and maize growing seasons. Soil NH4+ contents in the zeolite-amended plots were higher compared to the treatment without zeolite except for the first 1 or 2 weeks after PS application when soil nitrate (NO3-) contents significantly decreased. The increase in soil NH4+ content as affected by zeolite application was more distinct in the maize growing season than in the IRG growing season. NH3 emission was predominant at the early 2 weeks after PS application. Zeolite application reduced the cumulative emission of NH3 from PS by 16.7% and 24.4% and that of N2O by 15.6% and 31.5% in the IRG growing and maize growing seasons, respectively. NUE for dry matter (DM) and total digestible nutrients (TDN) production significantly improved in annual yield basis of the IRG-maize cropping. Zeolite application in PS-applied field may represent effective management in mitigating N losses through odorous NH3 and greenhouse gas (N2O) emissions, thereby improving NUE forage production.


Assuntos
Lolium , Zeolitas , Animais , Suínos , Nitrogênio , Zea mays , Solo , Óxido Nitroso/análise , Fertilizantes , Produção Agrícola , Itália , Agricultura
13.
J Environ Manage ; 357: 120736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574706

RESUMO

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Biocombustíveis/análise , Saneamento , Solo/química , Metano/análise , Óxido Nitroso/metabolismo , Efeito Estufa
16.
Huan Jing Ke Xue ; 45(3): 1692-1701, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471881

RESUMO

In rice-vegetable rotation systems in tropical areas, a large amount of nitrate nitrogen accumulates after fertilization in the melon and vegetable season, which leads to the leaching of nitrate nitrogen and a large amount of N2O emission after the seasonal flooding of rice, which leads to nitrogen loss and intensification of the greenhouse effect. How to improve the utilization rate of nitrate nitrogen and reduce N2O emissions has become an urgent problem to be solved. Six treatments were set up [200 mg·kg-1 KNO3 (CK); 200 mg·kg-1 KNO3 + 2% biochar addition (B); 200 mg·kg-1 KNO3+1% peanut straw addition (P); 200 mg·kg-1 KNO3 + 2% biochar + 1% peanut straw addition (P+B); 200 mg·kg-1 KNO3 + 1% rice straw addition (R); 200 mg·kg-1 KNO3 + 2% biochar+1% rice straw addition (R+B)] and cultured at 25℃ for 114 d to explore the effects of organic material addition on greenhouse gas emissions and nitrogen use after flooding in high nitrate nitrogen soil. The results showed that compared with that in CK, adding straw or combining straw with biochar significantly increased soil pH (P<0.05). The B and P treatments significantly increased the cumulative N2O emissions by 41.6% and 28.5% (P<0.05), and the P+B, R, and R+B treatments significantly decreased the cumulative N2O emissions by 14.1%, 24.7%, and 36.7% (P<0.05), respectively. The addition of straw increased the net warming potential of greenhouse gases (NGWP). The addition of coir biochar significantly reduced the effect of straw on NGWP (P<0.05). The combined application of straw and biochar decreased NGWP, and P+B significantly decreased NGWP, but that with R+B was not significant (P>0.05). Adding straw or biochar significantly increased soil microbial biomass carbon (MBC) (P<0.05), and that of P+B was the highest (502.26 mg·kg-1). The combined application of straw and biochar increased soil microbial biomass nitrogen (MBN), and that of P+B was the highest. The N2O emission flux was negatively correlated with pH (P<0.01) and positively correlated with NH4+-N and NO3--N (P<0.01). The cumulative emission of N2O was negatively correlated with MBN (P<0.05). There was a significant negative correlation between NO3--N and MBN (P<0.01), indicating that the reduction in NO3--N was likely to be held by microorganisms, and the increase in the microbial hold of NO3--N also reduced N2O emission. In conclusion, the combined application of peanut straw and coconut shell biochar could significantly inhibit N2O emission and increase soil MBC and MBN, which is a reasonable measure to make full use of nitrogen fertilizer, reduce nitrogen loss, and slow down N2O emission after the season of Hainan vegetables.


Assuntos
Gases de Efeito Estufa , Oryza , Solo/química , Gases de Efeito Estufa/análise , Verduras , Agricultura/métodos , Nitratos , Nitrogênio , Óxido Nitroso/análise , Carvão Vegetal , China , Fertilizantes
17.
Huan Jing Ke Xue ; 45(2): 929-939, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471931

RESUMO

The effects of biochar application on soil nitrous oxide (N2O) and methane (CH4) emissions in a typical rice-vegetable rotation system in Hainan after two years were investigated. The aim was to clarify the long-term effects of biochar on greenhouse gas emissions under this model, and it provided a theoretical basis for N2O and CH4 emission reduction in rice-vegetable rotation systems in tropical regions of China. Four treatments were set up in the field experiment, including no nitrogen fertilizer control (CK); nitrogen, phosphorus, and potassium fertilizer (CON); nitrogen, phosphorus, and potassium fertilizer combined with 20 t·hm-2 biochar (B1); and nitrogen, phosphorus, and potassium fertilizer combined with 40 t·hm-2 biochar (B2). The results showed that: ① compared with that in the CON treatment, the B1 and B2 treatments significantly reduced N2O emissions by 32% and 54% in the early rice season (P < 0.05, the same below), but the B1 and B2 treatments significantly increased N2O emissions by 31% and 81% in the late rice season. The cumulative emissions of N2O in the pepper season were significantly higher than those in the early and late rice seasons, and the B1 treatment significantly reduced N2O emissions by 35%. There was no significant difference between the B2 and CON treatments. ② Compared with that in the CON treatment, B1 and B2 significantly reduced CH4 emissions by 63% and 65% in the early rice season, and the B2 treatment significantly increased CH4 emissions by 41% in the late rice season. There was no significant difference between the B1 and CON treatments. There was no significant difference in cumulative CH4 emissions between treatments in the pepper season. ③ The late rice season contributed to the main global warming potential (GWP) of the rice-vegetable rotation system, and CH4 emissions determined the magnitude of GWP and greenhouse gas emission intensity (GHGI). After two years of biochar application, B1 reduced the GHGI of the whole rice-vegetable rotation system, and B2 increased the GHGI and reached a significant level. However, the B1 and B2 treatments significantly reduced GHGI in the early rice season and pepper season, and only the B2 treatment increased GHGI in the late rice season. ④ Compared with that in the CON treatment, the B1 and B2 treatments significantly increased the yield of early rice by 33% and 51%, and the B1 and B2 treatments significantly increased the yield of pepper season by 53% and 81%. In the late rice season, there was no significant difference in yield except for in the CK treatment without nitrogen fertilizer. The results showed that the magnitude of greenhouse gas emissions in the tropical rice-vegetable rotation system was mainly determined by CH4 emissions in the late rice season. After two years of biochar application, only low biochar combined with nitrogen fertilizer had a significant emission reduction effect, but high and low biochar combined with nitrogen fertilizer increased the yield of early rice and pepper crops continuously.


Assuntos
Carvão Vegetal , Gases de Efeito Estufa , Oryza , Gases de Efeito Estufa/análise , Agricultura/métodos , Fertilizantes/análise , Solo , Nitrogênio , China , Metano/análise , Óxido Nitroso/análise , Fósforo , Verduras , Potássio
18.
Glob Chang Biol ; 30(3): e17233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469991

RESUMO

Nitrous oxide (N2 O) exacerbates the greenhouse effect and thus global warming. Agricultural management practices, especially the use of nitrogen (N) fertilizers and irrigation, increase soil N2 O emissions. As a vital sector of global agriculture, specialty crop systems usually require intensive input and management. However, soil N2 O emissions from global specialty crop systems have not been comprehensively evaluated. Here, we synthesized 1137 observations from 114 published studies, conducted a meta-analysis to evaluate the effects of agricultural management and environmental factors on soil N2 O emissions, and estimated global soil N2 O emissions from specialty crop systems. The estimated global N2 O emission from specialty crop soils was 1.5 Tg N2 O-N year-1 , ranging from 0.5 to 4.5 Tg N2 O-N year-1 . Globally, soil N2 O emissions exponentially increased with N fertilizer rates. The effect size of N fertilizer on soil N2 O emissions generally increased with mean annual temperature, mean annual precipitation, and soil organic carbon concentration but decreased with soil pH. Global climate change will further intensify the effect of N fertilizer on soil N2 O emissions. Drip irrigation, fertigation, and reduced tillage can be used as essential strategies to reduce soil N2 O emissions and increase crop yields. Deficit irrigation and non-legume cover crop can reduce soil N2 O emissions but may also lower crop yields. Biochar may have a relatively limited effect on reducing soil N2 O emissions but be effective in increasing crop yields. Our study points toward effective management strategies that have substantial potential for reducing N2 O emissions from global agricultural soils.


Assuntos
Fertilizantes , Solo , Fertilizantes/análise , Carbono , Agricultura , Óxido Nitroso/análise , Nitrogênio/análise
19.
Pediatr Dent ; 46(1): 57, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449044
20.
Waste Manag ; 178: 311-320, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428381

RESUMO

Animal slurry storage is an important ammonia (NH3) emission source. Sulfuric acid (H2SO4)-modified vermiculite coverage is a new promising technology for controlling NH3 emission from slurry storage. However, the underlying mechanisms in controlling the mitigation effect remain unclear. Here, a series of experiments to determine the effect of H2SO4 on the modified vermiculite properties, floating persistence, and NH3 mitigation effect was conducted. Results showed that abundant H2SO4 and sulfate remained on the outer surface and in the extended inner pores of the vermiculite with acidifying H+ concentrations higher than 5 M. An initial strong instantaneous acidification of surface slurry released rich carbon dioxide bubbles, strengthening cover floating performance. An acidification in the vermiculite cover layer and a good coverage inhibition interacted, being the two leading mechanisms for mitigating NH3 during initial 40-50 days of storage. The bacterial-amoA gene dominated the conversion of NH3 to nitrous oxide after 50 days of storage. Vermiculite with 5 M H+ modification reduced the NH3 emissions by 90 % within the first month of slurry storage and achieved a 64 % mitigation efficiency throughout the 84 days period. With the development of the aerial spraying equipment such as agricultural drones, acidifying vermiculite coverage hold promise as an effective method for reducing NH3 emission while absorbing nutrients from liquid slurry storage tank or lagoon. This design should now be tested under field conditions.


Assuntos
Silicatos de Alumínio , Amônia , Ácidos Sulfúricos , Animais , Amônia/análise , Agricultura , Esterco , Óxido Nitroso/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA